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Abstract. Let I = {(i, j) | i = 1, 2, . . . , N1, j = 1, 2, . . . , N2} and let U = Ui,j , (i, j) ∈ I

be a discrete real function defined on I . Let [·]2π be · modulus 2π , we define W : I → [−π , π)
as follows W = [U ]2π . The function U will be called phase function and the function W will be
called wrapped phase function. The phase unwrapping problem consists in recovering U from some
knowledge of W . This problem is not well defined, that is infinitely many functions U correspond
to the same function W , and must be ‘regularized’ to be satisfactorily solvable. We propose several
formulations of the phase unwrapping problem as an integer nonlinear minimum cost flow problem
on a network. Numerical algorithms to solve the minimum cost flow problems obtained are proposed.
The phase unwrapping problem is the key problem in interferometry, we restrict our attention to the
SAR (Synthetic Aperture Radar) interferometry problem. We compare the different formulations
of the phase unwrapping problem proposed starting from the analysis of the numerical experience
obtained with the numerical algorithms proposed on synthetic and real SAR interferometry data. The
real data are taken from the ERS missions of the European Space Agency (ESA).

Key words: SAR interferometry problem, phase unwrapping problem, nonlinear minimum cost flow,
integer programming

1. Introduction

The phase unwrapping problem occurs in several application fields being a key
problem in interferometry, (for a review see Oppenheim and Lim, 1981 and Zeb-
ker and Goldstein, 1986). Recently phase unwrapping has been used in remote
sensing to recover the digital elevation map of the Earth surface from SAR (Syn-
thetic Aperture Radar) interferograms obtained from data measured with SAR
systems travelling on board of satellites or airplanes, (see, for example Zebker and
Goldstein, 1986 and Goldstein et al., 1988).

Let us begin introducing some notation necessary to define the phase unwrap-
ping problem. Let IN , ZZ, IR be the sets of natural, integer and real numbers
respectively. Let N ∈ IN , we denote with ZZN the set of N-tuples on integers, with
IRN the N-dimensional real euclidean space. Let x = (x1, x2, . . . , xN)t ∈ IRN be
a generic vector, where the superscript t denotes the transposition operation, for x,
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y ∈ IRN we denote with xty the euclidean scalar product of x and y. Let p � 1,
the p-norm in IRN is defined as follows:

∥∥x∥∥
p

=
( N∑
n=1

|xn|p
)1/p

,

when p = ∞ the ∞-norm is defined as follows:
∥∥x∥∥∞ = max{|x1|, |x2| , . . . ,

|xN |}. Note that p = 2 gives the euclidean vector norm induced by the euclidean
scalar product.

The problem addressed in this paper consists in the computation of a real valued
function (the unwrapped phase function) defined on a discrete set (i.e. rectangular
grid) from the knowledge of its values modulus 2π (the wrapped phase function).
What follows is the mathematical formulation of this problem. Let N1, N2 ∈ IN ,
we define I = {(i, j) | i = 1, 2, . . . , N1, j = 1, 2, . . . , N2}. We consider the
functions U : I → IR that we call (unwrapped) phase functions, the [·]2π operation
that consists in taking the modulus 2π of ·, note that we choose [·]2π ∈ [−π, π),
so that for example we have

[
3
2π
]

2π = −π
2 , moreover we consider the functions

W = [U ]2π that we call wrapped phase functions. With [−π , π) we denote the
bounded interval −π , π closed to the right end point and open to the left end point.
Let U = Ui,j , (i, j) ∈ I , the function W = [U ]2π : I → [−π, π) is defined as
follows: for (i, j) ∈ I , W = Wi,j = [U ]2π i,j = [Ui,j ]2π . The phase unwrapping
problem in its simplest form can be stated as follows: given the functionW or more
in general some information about W find U such that W = [U ]2π .

The phase unwrapping problem as stated is not well defined. In fact let N =
{u : I → IR| u = ui,j = 2πki,j , ki,j ∈ ZZ , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2}
it is easy to see that when u ∈ N we have [u]2π = 0. That is if [U ]2π = W then
u + U with u ∈ N satifies [u + U ]2π = [U ]2π = W , so that there are infinitely
many different functions U such that [U ]2π = W . Note that W = [W ]2π . This
means that the previous phase unwrapping problem is stated too loosely. In fact
between the functions:

U = W + u , u ∈ N , (1)

that are solutions of the phase unwrapping problem stated above we must introduce
a merit function to be able to choose the ‘best solution’.

In this paper we reformulate the phase unwrapping problem as a global optim-
ization problem. Of course this can be done in many different ways. We choose to
model the phase unwrapping problem as an integer minimum cost flow problem on
a network. This choice generalizes the choice made in (Costantini, 1998). In (Cost-
antini, 1998) the objective function was chosen to be the 1-norm of the unknown
vector, in this paper we consider as objective function the p-norm of the unknown
vector with p > 1 or p = ∞. The case of the 1-norm is a very special one since in
that case the fact that we work with integer variables, that is ki,j ∈ ZZ, (i, j) ∈ I ,
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can be overcome easily using the fact that integer linear programming on a net-
work can be reformulated as a problem with real variables (Bertsekas, 1991, p. 10,
Cook et al., 1998, p. 94), and solved using the simplex method. When the p-norm
with p > 1 is considered the problem becomes an integer nonlinear programming
problem where the integer character of the variables cannot be avoided with simple
transformations. Moreover if we have in mind applications to SAR interferometry
in remote sensing we must remember that problems involving 10 000-100 000 in-
dependent variables are the rule. We propose two numerical algorithms to solve
the integer programming problems that model the phase unwrapping problem. The
first algorithm is based on an approximation of the p-norm of a vector, when p > 1
or p = ∞, with an expression that is linear with respect to the components of the
vector. The second algorithm solves the integer programming problem for p = ∞
with a sequence of integer linear programming problems on a network of the same
nature of the p = 1 problems, these problems can be solved easily.

Finally we explain briefly the basic facts about a SAR interferometry experi-
ment and we test the mathematical models and the numerical algorithms proposed
to solve them on synthetic and real SAR interferometry data. The real data are
obtained from the ERS missions of the European Space Agency. The quality of
the reconstructed phase function depends on the mathematical model used and on
the character of the data, i.e., in the SAR interferometry experiment the content of
the scene observed. We propose a heuristic analysis to choose the most appropriate
mathematical model given the character of the data.

In Section 2 we propose the mathematical models of the phase unwrapping
problem considered and the numerical algorithms to solve them. In Section 3 a
SAR interferometry experiment is explained and the models and algorithms of
Section 2 are tested on synthetic and real SAR interferometry data. Finally we
comment on the problem of choosing the appropriate model to process a given set
of data.

2. The mathematical formulation of the phase unwrapping problem and its
numerical solution

From the knowledge of Wi,j ∈ [−π, π), (i, j) ∈ I , we have to reconstruct Ui,j ,
(i, j) ∈ I , such that Wi,j = [Ui,j ]2π , (i, j) ∈ I .

To solve this problem we begin with the following observation. Let I1 = {(i, j),
i = 1, 2, . . . , N1 − 1, j = 1, 2, . . . , N2}, I2 = {(i, j), i = 1, 2, . . . , N1, j = 1,
2, . . . , N2 − 1} and let F : I → IR be a function, we define the operators �1, �2

acting on the function F as follows:

F1 = F1,i,j = �1Fi,j = Fi+1,j − Fi,j , (i, j) ∈ I1, (2)

F2 = F2,i,j = �2Fi,j = Fi,j+1 − Fi,j , (i, j) ∈ I2. (3)
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In the following we call the operators �1, �2 discrete partial derivatives of the
function F . The vector field (F1, F2)

t = (�1F , �2F)
t defined on I1 ∩ I2 will be

called discrete gradient vector field of the function F .
It is easy to see that a vector field (F1, F2)

t defined on I1 ∩ I2 is the gradient of
a function F defined on D if and only if:

�2F1,i,j = �1F2,i,j , (i, j) ∈ I1 ∩ I2. (4)

In the following condition (4) will be called irrotational property, moreover when
condition (4) is satisfied we have:

Fi,j = F1,1 +
i−1∑
l=1

F1,l,1 +
j−1∑
l=1

F2,i,l , (i, j) ∈ I. (5)

In (5) when i or j are equal to 1, that is when the upper index of the sums i − 1 or
j − 1 is equal to zero, we define the corresponding sum to be equal to zero. Note
that formulae (4), (5) are discrete translations of well known results of elementary
calculus in the study of integrable first order differential forms. We have:

[�1U ]2π i,j =
[
[U ]2π i+1,j − [U ]2π i,j

]
2π
, (i, j) ∈ I1, (6)

and when �1Ui,j ∈ [−π , π), (i, j) ∈ I1 we have:

[�1U ]2π i,j = �1Ui,j , (i, j) ∈ I1. (7)

Formulae similar to (6), (7) hold for �2U .
We note that when�1U and�2U take values in [−π , π) the phase unwrapping

problem can be solved as follows: since [U ]2π = W from the knowledge ofW and
from (6) we obtain [�1U ]2π so that from (7) we obtain �1U . Similarly we can
derive �2U . Finally from the knowledge of the vector field (�1U , �2U)

t using
formula (5) we obtain U up to an undetermined additive constant, i.e. U1,1. For
slowly varying U , that is when�νU ∈ [−π , π), ν = 1, 2, the previous observation
is a satisfactory solution of the phase unwrapping problem.

In the general case we define:

Gν,i,j = [�νW ]2π i,j + 2πkν,i,j , (i, j) ∈ Iν , ν = 1, 2, (8)

where kν,i,j , (i, j) ∈ Iν , ν = 1, 2, are N1(N2 − 1) +N2(N1 − 1) integer variables
to be determined. Note that we can define N1(N2 − 1)+N2(N1 − 1) integers bν,i,j ,
(i, j) ∈ Iν , ν = 1, 2 such that:

[�νW ]2π i,j = �νWi,j + 2πbν,i,j , (i, j) ∈ Iν , ν = 1, 2. (9)

Moreover it is easy to see that the choice of bν,i,j , (i, j) ∈ Iν , ν = 1, 2 made in (9)
is unique when we require that bν,i,j ∈ {−1, 0, 1}, (i, j) ∈ Iν , ν = 1, 2. Note that



A CLASS OF GLOBAL OPTIMIZATION PROBLEMS AS MODELS OF . . . . 293

the requirement bν,i,j ∈ {−1, 0, 1}, (i, j) ∈ Iν , ν = 1, 2 is implied by the fact that
Wi,j ∈ [−π , π), (i, j) ∈ I . Equation (4) must hold in order for (G1,G2)

t given by
(8) to be the gradient vector field of a function U , that is:

�2G1,i,j = �1G2,i,j , (i, j) ∈ I1 ∩ I2. (10)

We note that the discrete partial derivatives introduced above are always used with
fixed ‘stepsize’. There is no reason in considering the behaviour of the discrete
partial derivatives as a function of the ‘stepsize’ since in the applications we have in
mind the ‘stepsize’ is fixed. Condition (10) translates into the following constraints
on the integer variables kν,i,j , (i, j) ∈ Iν , ν = 1, 2:

k1,i,j+1 − k1,i,j − k2,i+1,j + k2,i,j =
−(b1,i,j+1 − b1,i,j − b2,i+1,j + b2,i,j ),

(i, j) ∈ I1 ∩ I2. (11)

The equations (11) are (N1 − 1)(N2 − 1) linear constraints for the N1(N2 − 1) +
N2(N1 − 1) integer variables kν,i,j , (i, j) ∈ Iν , ν = 1, 2. Moreover it is easy to
see that these constraints are always feasible. In fact kν,i,j = −bν,i,j , (i, j) ∈ Iν ,
ν = 1, 2 is always a feasible point of the constraints (11).

For any choice of the variables kν,i,j , (i, j) ∈ Iν , ν = 1, 2 that satisfies the
constraints (11) the vector field (G1, G2)

t given by (8) is the gradient vector field
of a function U . This function, the unwrapped phase, can be recovered up to an
additive constant using formula (5). Infinitely many different reconstructions are
possible one for each feasible point of the constraints (11). Moreover we know that
when �1U ,�2U ∈ [−π , π) the choice of the feasible point kν,i,j = 0, (i, j) ∈ Iν ,
ν = 1, 2 gives the correct reconstruction. We must keep this in mind when we
introduce a merit function to distinguish the ‘best’ reconstruction between all the
possible ones.

Let N = N1(N2 − 1)+N2(N1 − 1), k ∈ ZZN , be the vector whose components
are given by kν,i,j , (i, j) ∈ Iν , ν = 1, 2, then we require the

∥∥k∥∥
p

to be as small
as possible. Let Ak = b be the system of linear equations (11) written in matrix–
vector notation. The matrix A is the matrix of the coefficients of the unknowns, it
is easy to see that A has (N1 − 1)(N2 − 1) rows and N columns; b ∈ ZZ(N1−1)(N2−1)

is the vector containing the terms on the right hand side of equations (11). Then we
consider the following optimization problem:

minfp(k)

s.t. : Ak = b, (12)

k ∈ ZZN,
where for k ∈ ZZN we define:

fp(k) =
{∥∥k∥∥p

p
, 1 � p <∞,∥∥k∥∥∞ , p = ∞. (13)
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Figure 1. The graph G associated to problem (12): kν,i,j , (i, j) ∈ Iν , ν = 1, 2 gives the flow
on each arc of G, conditions (11) give the flow balance on the nodes of G, ‘ground nodes’ are
auxiliary nodes.

We consider the class of problems (12), for p � 1 or p = ∞ as mathematical
models of the phase unwrapping problem. We note that for increasing values of p
we expect a decreasing value of the infinity norm of the minimizer of problem (12).
The formulation chosen in (12) has the advantage that the solution of problem (12)
can be avoided when Gν , ν = 1, 2 as defined in (8) verify the irrotational property
(10) that is when kν,i,j = 0, (i, j) ∈ Iν , ν = 1, 2 satisfy (11). This occurs for
example when b = (0, 0, . . . , 0)t ∈ ZZ(N1−1)(N2−1). Many other mathematical
formulations have been proposed for the phase unwrapping problem, (see, for
example Goldstein et al., 1988; Costantini, 1998; Costantini et al., 1999; Fried,
1977).

Note that the minimizer of problem (12) may be not unique, so that further
conditions depending on a priori information about the data to be treated may be
useful. We note that the matrix A is a submatrix of the node-arc incidence matrix
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associated to the graph G shown in Figure 1. In particular the constraints Ak = b

of problem (12) can be seen as flow conservation conditions on the nodes of the
graph G that are labeled by (i, j) ∈ I1 ∩ I2, where the term b can be seen as the
exogenous supplies at the nodes of the graph G that are labeled by (i, j) ∈ I1 ∩ I2.
The objective function of problem (12) can be interpreted as the function that gives
the cost of the flow on graph G.

We note that (12) is not a network problem because the constraints Ak = b

do not give flow conservation conditions on ‘ground nodes’. However we can con-
sider a network problem equivalent to problem (12), i.e., having the same solution
of problem (12). This can be done introducing an artificial node in graph G and
connecting this node to each ground node. Moreover we require that each ground
node has exogenous supply equal to zero and that the artificial node has exogenous
supply equal to −σ , where σ is the sum of the components of vector b. It is easy to
see that such a network problem and problem (12) are equivalent, in virtue of this
equivalence we can consider also problem (12) as a network problem. Note that
the particular requirement on the exogenous supply of the artificial node assures
that the sum of the exogenous supplies of all the nodes in the network are equal to
zero. This is a necessary condition for the solvability of a generic minimum cost
flow problem on a network (for details, see Bertsekas, 1991, p. 11).

We note that problem (12) for p = 1 can be rewritten as an integer linear
minimum cost flow problem on a network, so that the integer constraints on the
variables cause no further difficulty, (see, for example, Bertsekas, 1991 p. 10; Cook
et al., 1998, p. 94). For p ∈ IR, with p > 1, or p = ∞ the objective function of
problem (12) is convex, so that problem (12) without the integer constraints on
the variables can be solved easily; however, the integer constraints on the variables
make the problem difficult to solve because the problem becomes a integer convex
nonlinear optimization problem. The following example shows that the convexity
of this problem is not sufficient to guarantee a satisfactory solution of it via a
relaxion of the integer constraints.

EXAMPLE 1. Let us consider the following problem:

min{x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 },
s.t. : x1 + x2 = 5,

− x1 + x3 + x4 = 0,
− x2 − x3 + x5 = 0,
− x4 − x6 = −5,
− x5 + x6 = 0.

(14)

We note that problem (14) is a nonlinear minimum cost flow problem and in Figure
2 is shown the related graph. If we consider x = (x1, x2, x3, x4, x5, x6)

t ∈ IR6 the
minimizer of problem (14) is x∗ = ( 30

11 , 25
11 , − 5

11 , 35
11 , 20

11 , 20
11)

t , where the object-
ive function is equal to 325

11 . Moreover when we consider problem (14) with the
additional constraint x ∈ ZZ6, then the minimizer is y∗ = (3, 2, 0, 3, 2, 2)t and
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Figure 2. The graph ‘associated’ to problem (14): the variables of problem (14) give the flow
on the arcs of this graph, the constraints appearing in problem (14) give the flow balance on
the nodes of this graph, note that node 1 is a source and node 4 is a sink.

∥∥∥y∗
∥∥∥2

2
= 30. Let C be the set of vectors of ZZ6 whose components satisfy the

constraints of problem (14). It is easy to see that y = (5, 0, 1, 4, 1, 1)t ∈ C is the

closest point to x∗ belonging to C, but we have
∥∥∥y∥∥∥2

2
= 44.

We propose two algorithms to approximate the solution of problem (12). These
algorithms are based on the fact that the solution of problem (12) is easily comput-
able when the objective function is a linear function of the unknown vector k or can
be reduced to a linear function as in the case p = 1. In the following we assume
to have an algorithm to solve the integer linear minimum cost flow problem on a
network or equivalently to solve problem (12) for p = 1 (see, for example, Bertse-
kas, 1991, p. 279; Moré and Wright, 1993, p. 53). We note that many algorithms
to solve problems similar to problem (12) are proposed in the scientific literature,
(see, for example Fletcher and Leyffer, 1994; Toint and Tuyttens, 1992).

METHOD 1

The method is based on a classical approximation of a convex function by piece-
wise linear functions (see, for example, Dantzing, 1963, p. 484). Let us fix δ > 0,
n ∈ IN and let p ∈ IR, with p > 1. For (i, j) ∈ Iν , ν = 1, 2 we define the
following linear function of the variables h±

ν,i,j,n, n = 1, 2, . . . , n:

Kν,i,j (h
+
ν,i,j,1, h

−
ν,i,j,1, h

+
ν,i,j,2, h

−
ν,i,j,2, . . . , h

+
ν,i,j,n, h

−
ν,i,j,n) =

n∑
n=1

(
np − (n− 1)p

)
δp−1

(
h+
ν,i,j,n + h−

ν,i,j,n

)
,

h±
ν,i,j,n ∈ [0, δ], n = 1, 2, . . . , n, (15)

where [0, δ] denotes the bounded closed interval of end points 0 and δ. For every
(i, j) ∈ Iν , ν = 1, 2 the function Kν,i,j (h

+
ν,i,j,1, h−

ν,i,j,1, h+
ν,i,j,2, h−

ν,i,j,2, . . . , h
+
ν,i,j,n,

h−
ν,i,j,n) can be seen as the piecewise linear interpolation of the function

∣∣kν,i,j ∣∣p in
the interval [−nδ, nδ] corresponding to the nodes kν,i,j = −nδ, −(n − 1)δ, . . . ,
−δ, 0, δ, . . . , (n − 1)δ, nδ when the following relation between kν,i,j and h+

ν,i,j,n,
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Figure 3. The function kpν,i,j , kν,i,j > 0, p > 1, and its piecewise linear interpolation Kν,i,j .

h−
ν,i,j,n, n = 1, 2, . . . , n, holds: when kν,i,j ∈ [(m− 1)δ, mδ], 1 � m � n, we must

have h+
ν,i,j,n = δ for n < m, h+

ν,i,j,m = kν,i,j −(m−1)δ, h+
ν,i,j,n = 0 form < n � n,

h−
ν,i,j,n = 0 for 1 � n � n; when kν,i,j ∈ [mδ, (m + 1)δ], −n � m � −1, we

must have h−
ν,i,j,−n = δ for n > m, h−

ν,i,j,−m = (m + 1)δ − kν,i,j , h
−
ν,i,j,−n = 0

for −n � n < m, h+
ν,i,j,n = 0 for 1 � n � n, see Figure 3. Let h ∈ IR2nN be

the vector obtained substituting each component kν,i,j , (i, j) ∈ Iν , ν = 1, 2 of the
vector k with the corresponding 2n components h+

ν,i,j,n, h
−
ν,i,j,n, n = 1, 2, . . . , n.

We denote L(N, δ, n) the space of the vectors (kt , ht)t whose components are in
the previously mentioned relations. Using the previous approximation when (kt ,
ht )t ∈ L(N , δ, n) we can substitute the objective function of problem (12),

∥∥k∥∥p
p
,

p > 1, with the following function:

lp(h)=
∑
ν=1,2

∑
(i,j)∈Iν

Kν,i,j (h
+
ν,i,j,1, h

−
ν,i,j,1, h

+
ν,i,j,2, h

−
ν,i,j,2, . . . , h

+
ν,i,j,n, h

−
ν,i,j,n).

(16)

Note that when p = 1 we can choose n = 1, so that for δ large enough no
approximation is involved, that is:

∥∥k∥∥1 = l1(h) for every (kt , ht )t ∈ L(N , δ,
n). Moreover we can rewrite the constraints (11) as follows:

n∑
n=1

(
h+

1,i,j+1,n − h−
1,i,j+1,n − h+

1,i,j,n + h−
1,i,j,n −

h+
2,i+1,j,n + h−

2,i+1,j,n + h+
2,i,j,n − h−

2,i,j,n

)
=

−(b1,i,j+1 − b1,i,j − b2,i+1,j + b2,i,j ),

(i, j) ∈ I1 ∩ I2. (17)
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The constraints (17) can be rewritten in matrix-vector notation as Ãh = b, it is
easy to see that Ã has (N1 − 1)(N2 − 1) rows and 2nN columns, and that b ∈
ZZ(N1−1)(N2−1) is the vector appearing in problem (12). We consider the following
problem:

min lp(h)

s.t. : Ãh = b,
h ∈ ZZ2nN,

0 � h � δ,
(18)

where 0 = (0, 0, . . . , 0)t ∈ ZZ2nN , δ = (δ, δ, . . . , δ)t ∈ ZZ2nN .
Problem (18) is an approximation of problem (12) when the variables kν,i,j ,

(i, j) ∈ Iν , ν = 1, 2 belong to the interval [−nδ, nδ]. In fact let h∗ ∈ ZZ2nN be
a minimizer of problem (18) and h+∗

ν,i,j,n, h
−∗
ν,i,j,n, (i, j) ∈ Iν , ν = 1, 2, n = 1,

2, . . . , n be the components of h∗. It can be shown that the vector h∗ has the
following property: for ν = 1, 2, (i, j) ∈ Iν , given n1, with 1 � n1 � n, such that
h+∗
ν,i,j,n1

∈ (0, δ] (or h−∗
ν,i,j,n1

∈ (0, δ]) then we have h+∗
ν,i,j,n = δ (or h−∗

ν,i,j,n = δ) for

n = 1, 2, . . . , n1 − 1 and h−∗
ν,i,j,n = 0 (or h+∗

ν,i,j,n = 0) for n = 1, 2, . . . , n. Note that
(0, δ] denotes the bounded interval of end points 0, δ which is open to the left. This
property is a consequence of the convexity of the objective function of problem
(12), that makes the coefficients in (15) increasing when n increases, that is we

have
(
n
p

1 −(n1−1)p
)
δp−1 <

(
n
p

2 −(n2−1)p
)
δp−1 when 1 � n1 < n2 � n, p > 1.

Let k∗ ∈ ZZN be the vector having components k∗
ν,i,j = ∑n

n=1

(
h+∗
ν,i,j,n − h−∗

ν,i,j,n

)
,

(i, j) ∈ Iν , ν = 1, 2, then k∗ is the approximation of the minimizer of problem
(12) obtained substituting

∥∥k∥∥p
p

with lp(h). We note that the property of h∗ intro-

duced previously guarantees that lp(h
∗) is an approximation of

∥∥k∗∥∥p
p
, for every h∗

minimizer of problem (18), in fact we have that (k∗t , h∗t )t ∈ L(N , δ, n). This does
not guarantee that in general the solution of problem (12) is exactly the solution of
problem (18). More precisely we have that

∥∥k∗∥∥p
p

is an upper bound of the solution

of problem (12), moreover the difference between
∥∥k∗∥∥p

p
and the minimum attained

at the solution of problem (12) is bounded by a quantity increasing with δ. When
δ = 1 we can state the following convergence result:

THEOREM 1. Given N1, N2, n ∈ IN , let A be the coefficient matrix of the linear
system (11), Ã be the coefficient matrix of the linear system (17), b be the vector
on the right hand side of the linear systems (11) and (17). Let h∗ ∈ ZZ2nN be a
solution of problem (18) where δ = 1 such that h±∗

ν,i,j,n = 0, (i, j) ∈ Iν , ν = 1, 2;

then k∗
ν,i,j = ∑n

n=1

(
h+∗
ν,i,j,n − h−∗

ν,i,j,n

)
is a minimizer of problem (12).

Proof. It is a straightforward consequence of the fact that when δ = 1 and n is
large enough we have

∥∥k∥∥p
p

= lp(h), k ∈ ZZN , h ∈ ZZ2nN and (kt , ht)t ∈ L(N , δ,
n).
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We note that Theorem 1 can be immediately extended to integer convex nonlinear
programming problems more general than problem (12).

ALGORITHM 1. Read the parameters N1,N2, p, δ, n and the dataWi,j , (i, j) ∈
I ; compose the matrix Ã and the vector b of problem (18); perform the following
steps:
1. compute h∗ as a minimizer of problem (18);
2. compute k∗ as the vector whose components are given by:

k∗
ν,i,j =

n∑
n=1

(
h+∗
ν,i,j,n − h−∗

ν,i,j,n

)
, (i, j) ∈ Iν , ν = 1, 2; (19)

3. if
∣∣∣k∗
ν,i,j

∣∣∣ = nδ for some (i, j) ∈ Iν , ν = 1, 2 then stop and run again the

algorithm with a larger value for the parameters n, δ; otherwise compute the
gradient vector field (G1,G2)

t using formula (8), with kν,i,j = k∗
ν,i,j (i, j) ∈ Iν ,

ν = 1, 2 and compute Ui,j , (i, j) ∈ I using formula (5);
4. stop.

Problem (18) is an integer linear minimum cost flow problem on a network
corresponding to a graph G̃, which is a slight variation of graph G shown in Figure
1. So that the integer constraints in problem (18) can be handled easily.

METHOD 2

This algorithm computes a solution of problem (12) when p = ∞. It is an al-
gorithm more efficient than the previous one but it can deal only with problem
(12) when p = ∞ because it is based on a simple remark about the solutions of
problem (12) when p = ∞ and the solution of the same problem with an arbitrary
objective function. That is we can consider problem (12) for an arbitrary objective
function and with the additional bound constraints: −e � k � e, where e = (e,
e, . . . , e)t ∈ INN ⊂ IRN , where e is the smallest positive integer that makes the
problem feasible. Then every solution of this last problem is a solution of problem
(12) when p = ∞. This remark is a convergence result for the following algorithm
as a method to solve the problem (12) when p = ∞.

ALGORITHM 2. Read the parameters N1, N2, and the data Wi,j , (i, j) ∈ I ;
compose the matrix A and the vector b of problem (12); perform the following
steps:
1. compute k(0) as a feasible point of problem (12);
2. set c equal to 1;
3. set the components of the vector e ∈ ZZN equal to

∥∥k(0)∥∥∞;
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4. consider the following problem:

min 0t k
s.t. : Ak = b

k ∈ ZZN,
−e � k � e,

(20)

where 0 = (0, 0, . . . , 0)t ∈ ZZN ;
5. if problem (20) is feasible then compute k(c) as the minimizer of problem (20);

otherwise go to step 8;
6. increase c by 1;
7. if

∥∥k(c−1)
∥∥∞ > 1 set the components of the vector e ∈ ZZN equal to

∥∥k(c−1)
∥∥∞−

1 and go to step 4;
8. compute the gradient vector field (G1, G2)

t using formula (8), where kν,i,j =
k
(c−1)
ν,i,j (i, j) ∈ Iν , ν = 1, 2 are the components of the vector k(c−1) and compute
Ui,j , (i, j) ∈ I using formula (5);

9. stop.

Note that in Algorithm 1 and 2 the function U = Ui,j , (i, j) ∈ I reconstructed
through formula (5) is determined up to an additive constant. In Section 3 we
consider the problem of determining how the choice of the parameter p affects
the reconstruction of the function U . In the following we consider problem (12)
for p = 1, p = 2 and p = ∞. Problem (12) for p = ∞ can be solved using
Algorithm 1 when we consider a large value for p, such as for example p = 10,
or by Algorithm 2. The two solutions obtained are in general different even if they
have the same ∞-norm due to nonuniqueness of the minimizer. In the experiment
shown in section 3 we comment on this fact.

3. Numerical experiments using SAR interferometry data

We present the SAR interferometry problem. This problem contains a phase un-
wrapping problem, which can be solved using the methods proposed in Section 2.
Let (x, y, z)t be the cartesian coordinates system of IR3 having the z-axis along the
vertical direction and oriented downward, let (r, y, θ)t be the cylindrical coordin-
ates system of IR3, given by the following change of variables:

r =
√
x2 + z2, (21)

θ =
{

arctan z
x
, z > 0, x > 0,

π
2 , z > 0, x = 0.

(22)

We note that in the radar literature the cylindrical coordinate r is usually called
slant range coordinate and the y coordinate is usually called azimuth coordin-
ate. The Earth surface will be described by a surface of the type z = f (x, y),
(x, y)t ∈ IR2 for some given function f . The SAR system usually travels on board
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Figure 4. The SAR systems.

of satellites or airplanes. It is made by an antenna that measures information about
the electromagnetic field backscattered by the observed scene on the Earth surface.
This backscattering phenomenon is due to the presence of a known electromagnetic
incident field emitted by the SAR system. These measurements are processed by
the SAR system so that they can be interpreted as the measurements obtained with
an antenna whose aperture is larger than the aperture of the physical antenna, that is
a synthetic aperture antenna, so that the processed information has a higher resol-
ution than the unprocessed one. Let us consider two SAR systems S1, S2 travelling
on parallel trajectories along the direction of the y-axis (see Figure 4). We assume
that S1, S2 have the same y coordinate, so that their reciprocal position can be
determined by the distance d and the angle α that is the angle between the segment
joining S1, S2 and the horizontal plane passing through S1 (see Figure 4).

Note that in Figure 4 h is a reference distance, that is roughly speaking the
distance of the SAR systems from the Earth. Each SAR system measures the phase
of the electromagnetic radiation received modulus 2π as a function of the point
P on the observed scene. Note that S1, S2, P belong to a plane y=constant. The
observed scene is covered since the SAR systems S1, S2 travel along the y direction.
The difference modulus 2π of the phases measured by S1 and S2 is called the
wrapped interferometric phase. We note that in principle we can compute the z
coordinate of the points of the observed scene from the knowledge of their (x, y)t

coordinates, of the unwrapped interferometric phase and from the knowledge of the
positions of S1 and S2. The SAR interferometry phase unwrapping problem can be
stated as follows: from the knowledge of a wrapped interferometric phase compute
the corresponding (unwrapped) interferometric phase. We can conclude that SAR
interferometry when used to reconstruct the elevation map of the observed scene
contains as a key subproblem a phase unwrapping problem.

Let 01 ⊂ {(x, y)t ∈ IR2: x � 0} be a bounded open set, let Z : 01 → IR

be a given function, then we assume that the observed scene is described by the
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surface z = h−Z(x, y), (x, y)t ∈ 01, in cartesian coordinates and by the function
θ = 1(r, y), (r, y)t ∈ 02, in cylindrical coordinates, where 02 ⊂ IR2 is the image
of 01 through the change of variables (21), (22). We note that 1 is in general a
multivalued function and/or a non injective function. For example let us fix a value
y0 for the coordinate y; it can occur that the curve in the x, z plane z = h−Z(x, y0),
(x, y0)

t ∈ 01, contains various points having the same value of the cylindrical
coordinate r and distinct values of the cylindrical coordinate θ . This occurence
generates the so called layover phenomenon in the SAR measurements. Moreover
it can occur that the curve in the x, z plane z = h − Z(x, y0), (x, y0)

t ∈ 01,
contains various points having the same value of the cylindrical coordinate θ and
distinct values of the cylindrical coordinate r. This occurence generates the so
called shadow phenomenon in the SAR measurements. Layover phenomena and
shadow phenomena usually produce inaccurate solution of the phase unwrapping
problem. These phenomena correspond to real losses of information in the wrapped
interferometric phase. Let us suppose that layover phenomena and shadow phe-
nomena do not occur, then it is easy to see that the exact unwrapped interferometric
phase is given by:

ue(r, y) = 4π

λ
d cos(1(r, y)− α) , (r, y)t ∈ 02, (23)

where λ is the wavelength of the electromagnetic fields used to perform the meas-
urements, (for details, see Costantini et al, 1999). For (r, y)t ∈ 02 the quantity
ue(r, y) is given by (23) in the points where there is no layover or shadow phe-
nomenon and is given by the formulae explained in (Costantini et al, 1999) where
there is layover or shadow phenomenon. To take care of the experimental errors in
the measurements the unwrapped interferometric phase is perturbed with a random
error term, that is:

u(r, y) = ue(r, y) + ε(r, y) , (r, y)t ∈ 02, (24)

where ε(r, y) is the random error. The wrapped interferometric phase is given by:

w(r, y) = [u(r, y)]2π , (r, y)t ∈ 02. (25)

We assume that the measurement of w is made by a sampling operation; we
define:

Wi,j = w(r0 + jδ2, y0 + iδ1) , (i, j) ∈ I, (26)

where the set I is defined as done in the previous sections and r0, y0, δ1 > 0,
δ2 > 0 are parameters depending on the sampling operation. Of course we have to
compute the interferometric phase ue according to the same sampling parameters,
that is we have to compute:

Ue,i,j = ue(r0 + jδ2, y0 + iδ1) , (i, j) ∈ I, (27)



A CLASS OF GLOBAL OPTIMIZATION PROBLEMS AS MODELS OF . . . . 303

such that Wi,j = [Ue,i,j+ ε(r0 + jδ2, y0 + iδ1)]2π , (i, j) ∈ I .
This is a phase unwrapping problem of the form stated in the introduction, so

that we can compute its solution using the methods proposed in Section 2.
In the numerical simulation we consider synthetic SAR interferometry data and

real SAR interferometry data. We note that the numerical results of this section
are obtained solving problem (18) when Algorithm 1 is used and problems (12),
(20) when Algorithm 2 is used with RELAX4.5 We note that in the reconstruction
procedure of the unwrapped interferometric phase we must perform two differ-
ent steps. In the first one, analyzing the wrapped interferometric phase we must
choose the parameter p to use in the unwrapping procedure. In the second step
we must solve the phase unwrapping problem, with the parameter p chosen in
the first step, using Algorithm 1, or Algorithm 2. We have not jet a satisfactory
method to perform the first step of this reconstruction procedure. However for a
more complete information of the reader about this step we show, for the synthetic
data, the graphical representation of the wrapped interferometric phase and of the
minimizer k∗ of problem (12) for p = 1 and p = ∞.

SYNTHETIC DATA

In the following m stands for meter, the usual unit of length. Three different ex-
amples are considered. We fix the following parameters: h = 782563m, d =
143.13m, α = −1.44radiants, λ = 0.056415m. This choice corresponds to the
choice made in the experiment carried out in the ERS-1 mission of the European
Space Agency. In the following examples we consider a grid of points on 02, and
from relations (21), (22), (23), (24), (27) we compute the interferometric phase
Ui,j , (i, j) ∈ I corresponding to a given surface z = h − Z(x, y) defined for
(x, y)t ∈ 01. Moreover, with the previous notation, the grid on02 is defined by the
following parameters: r0 = 846645m, y0 = −797m, δ1 = 15.944m, δ2 = 7.905m,
N1 = 100, N2 = 100.

EXAMPLE 2. Let us consider the scene given by the following surface:

Z(x, y) = max
{

0, 100 − (
(x − xc)2 + (y − yc)2

)1/2
}
,

x ∈ [323115m, 325179m], y ∈ [−797m, 797m], (28)

where xc = 324148m, yc = 0m (see Figure 5). We assume no noise in the meas-
urements of the interferometric phase, i.e. in formula (24) we take ε(r, y) = 0,
(r, y)t ∈ 02.

5 RELAX4 is a minimum cost flow problems solver designed by D.P. Bertsekas and P. Tseng (for
details see Bertsekas, 1991, p. 279). This software package is available free of charge in the Web site
http://www.mit.edu/people/dimitrib/RELAX4.txt
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Figure 5. The scene of Example 2. In the figure we show ζ = Z(x, y).

Figure 6. The scene of Examples 3, 4. In the figure we show ζ = Z(x, y).

EXAMPLE 3. Let us consider the scene given by the following surface:

Z(x, y) = max
{

0, 500 − ([(x − xc)− (y − yc)]2
1250 +

[(x − xc)+ (y − yc)]2
1250)

1/2
}
,

x ∈ [323115m, 326104m], y ∈ [−797m, 797m], (29)

where xc = 324148m, yc = 0m (see Figure 6). Note that in (29) [·]1250 is the oper-
ation that consists in taking the modulus 1250 of · and we choose [·]1250 ∈ [−625,
625). We assume no noise in the measurements of the interferometric phase, i.e. in
formula (24) we take ε(r, y) = 0, (r, y)t ∈ 02.

EXAMPLE 4. Let us consider the scene of Example 3 (see Figure 6). We assume
some noise in the measurements of the interferometric phase, i.e. in formula (24)
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we compute ε(r, y), (r, y)t ∈ 02 in the grid points (r0 + jδ2, y0 + iδ1)
t , (i, j) ∈ I

sampling a random variable uniformly distributed in the interval
[

− π
3 , π3

]
.

We note that the scene in Example 2 is given by a horizontal plane at level z = h
and by a cone having height equal to 100m and slope equal to π

4 radiants. The scene
in Examples 3 and 4 is given by a horizontal plane at level z = h and by several
cones of height equal to 500m and slope equal to π

4 radiants. Note that in figures 5
and 6 different scales are used.

In Table 1 we report the results obtained in the Examples 2, 3, 4 using Algorithm
1 for p = 1, p = 2, p = ∞ and using Algorithm 2. In Algorithm 1 we have chosen
δ = 1, n = 3. The results obtained with Algorithm 2 are shown to evaluate the
quality of the results obtained with Algorithm 1 for p = ∞. In particular from the
solution k∗ of problem (12) we compute the reconstructed interferometric phase U
using formula (5) and choosing U1,1 = Ue,1,1. Two performance indices defined:

El2 =
( ∑

(i,j)∈I (Ue,i,j − Ui,j )2∑
(i,j)∈I (Ue,i,j − Ue,1,1)2

)1/2

, (30)

Klp =


∑
ν=1,2

∑
(i,j)∈Iν

∣∣∣k∗
ν,i,j + bν,i,j

∣∣∣p∑
ν=1,2

∑
(i,j)∈Iν

∣∣bν,i,j ∣∣p



1/p

, p � 1, (31)

Klp =
max

{ ∣∣∣k∗
ν,i,j + bν,i,j

∣∣∣ , (i, j) ∈ Iν, ν = 1, 2
}

max
{ ∣∣bν,i,j ∣∣ , (i, j) ∈ Iν, ν = 1, 2

} , p = ∞, (32)

are shown in Table 1. Note that the performance index El2 is independent from
the additive constant U1,1 used to reconstruct the unwrapped phase function U .
Index El2 is a measure of the distance between Ue and U , when El2 = 0 we
have Ue = U , when El2 is ‘small’ we have that U is close to Ue. Index Klp is a
measure of the distance between the vector k∗ and the vector having components
−bν,i,j , (i, j) ∈ Iν , ν = 1, 2. Note that this last vector is always a feasible point for
problem (12), and it can be considered a trivial solution of problem (12). Finally
in Table 1 we report the number of variables N and the number of constraints M
of problem (12) and the time T , measured in seconds(s), necessary to solve the
corresponding problem on the following computer: Digital Ultimate Workstation
533au, CPU: DEC 21164A Alpha AXP533MHz.

Let us make some comments on the properties of the solutions of problem (12)
depending on the value of the parameter p, (for details, see Aluffi-Pentini et al.,
1999; Björck, 1996). It can be seen that any non-trivial solution of problem (12) for
p large or p = ∞ tends to have more non-null components than the corresponding
solutions for p small or p = 1. Moreover the components of the solutions for p
large or p = ∞ tend to assume smaller values than the corresponding components
of the solutions for p small or p = 1. We note that a non-null correction kν,i,j ,
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Table 1. The numerical results obtained on the synthetic data.

p = 1 p = 2 p = ∞
Algorithm 1 Algorithm 1 Algorithm 1 Algorithm 2

Example 2
∥∥k∗∥∥1 = 2∥∥k∗∥∥2

2 = 2∥∥k∗∥∥∞ = 1

El2 = 0

Kl1 = 0.98

N = 39608

M = 9806

T = 1.37s

∥∥k∗∥∥1 = 2∥∥k∗∥∥2
2 = 2∥∥k∗∥∥∞ = 1

El2 = 0

Kl2 = 0.99

N = 158020

M = 29412

T = 8.36s

∥∥k∗∥∥1 = 2∥∥k∗∥∥2
2 = 2∥∥k∗∥∥∞ = 1

El2 = 0

Kl∞ = 1

N = 158020

M = 29412

T = 1.37s

∥∥k∗∥∥1 = 2∥∥k∗∥∥2
2 = 2∥∥k∗∥∥∞ = 1

El2 = 0

Kl∞ = 1

N = 39608

M = 9806

T = 2.85s

Example 3
∥∥k∗∥∥1 = 510∥∥k∗∥∥2

2 = 518∥∥k∗∥∥∞ = 2

El2 = 0.80

Kl1 = 0.61

N = 39608

M = 9806

T = 1.60s

∥∥k∗∥∥1 = 510∥∥k∗∥∥2
2 = 510∥∥k∗∥∥∞ = 1

El2 = 0.80

Kl2 = 0.77

N = 158020

M = 29412

T = 8.09s

∥∥k∗∥∥1 = 510∥∥k∗∥∥2
2 = 510∥∥k∗∥∥∞ = 1

El2 = 0.80

Kl∞ = 2

N = 158020

M = 29412

T = 8.65s

∥∥k∗∥∥1 = 721∥∥k∗∥∥2
2 = 721∥∥k∗∥∥∞ = 1

El2 = 0.70

Kl∞ = 2

N = 39608

M = 9806

T = 1.83s

Example 4
∥∥k∗∥∥1 = 569∥∥k∗∥∥2

2 = 579∥∥k∗∥∥∞ = 2

El2 = 0.92

Kl1 = 0.51

N = 39608

M = 9806

T = 1.44s

∥∥k∗∥∥1 = 570∥∥k∗∥∥2
2 = 570∥∥k∗∥∥∞ = 1

El2 = 0.92

Kl2 = 0.73

N = 158020

M = 29412

T = 10.39s

∥∥k∗∥∥1 = 570∥∥k∗∥∥2
2 = 570∥∥k∗∥∥∞ = 1

El2 = 0.92

Kl∞ = 2

N = 158020

M = 29412

T = 2.54s

∥∥k∗∥∥1 = 824∥∥k∗∥∥2
2 = 824∥∥k∗∥∥∞ = 1

El2 = 0.87

Kl∞ = 2

N = 39608

M = 9806

T = 1.59s

(i, j) ∈ Iν , ν = 1, 2 in (8) is expected where the interferometric phase comes
from points of the scene where the irrotational property is violated. We note that in
Example 2 the irrotational property is violated at 0.04% of the points of I1 ∩ I2; in
Example 3 the irrotational property is violated at 3.37% of the points of I1 ∩ I2; in
Example 4 the irrotational property is violated at 4.76% of the points of I1 ∩ I2.

From these remarks we expect that in Example 2 problem (12) for p small
gives a better solution than the solution obtained solving the same problem for p
large. On the contrary we expect that in Examples 3, 4 problem (12) for p small
gives a worse solution than the solution obtained solving the same problem for p
large. These opinions are confirmed in Table 1 when the solution of problem (12)
with p = ∞ obtained with Algorithm 2 is considered. Moreover we note that in
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Figure 7. Example 2:(a) the wrapped interferometric phase W , (b) the exact unwrapping
integers

∣∣k1,i,j
∣∣, (i, j) ∈ I1, (c) the exact unwrapping integers

∣∣k2,i,j
∣∣, (i, j) ∈ I2.

all the examples Algorithms 1, 2 have provided a solution different fron the trivial
solution −bν,i,j , (i, j) ∈ Iν , ν = 1, 2, in fact we have alwaysKlp �= 0. For Example
3 we have large El2 errors in the reconstructed phase U . These errors are due to
the fact that the scene considered induces a difficult phase unwrapping problem.
In Example 4 the random perturbation ε makes the situation worse. In Table 1
can be observed that there are several solutions of problem (12) for p = ∞, in
fact different algorithms find different solutions. Furthermore one of the solutions
corresponding to p = ∞ is better than the other solutions. This is a promising fact
that should be exploited. We hope to be able to take advantage of the degeneracy of
problem (12) when p = ∞ to find a satisfactory solution of the phase unwrapping
problem when difficult scenes are considered.

In Figure 7 we have shown for Example 2 the unwrapped interferometric phase
W and the exact unwrapping integers kν , ν = 1, 2, that is the integers satisfying
relation (8) where Gν , ν = 1, 2 are substituted with �νUe, ν = 1, 2. In Figures 9
and 11 it is shown tha same information for Example 3, 4 respectively. In Figures
8, 10 and 12 we have shown for Example 2, 3, 4 respectively the results obtained
with Algorithm 1 for p = 1 and with Algorithm 2 (p = ∞).

REAL DATA

We consider an example where the interferometric data are obtained by a pair of
ERS-1 SAR measurements of a region of Sardinia, Italy. These SAR measurements
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Figure 8. Example 2: (a)
∣∣∣k∗1,i,j

∣∣∣, (i, j) ∈ I1 computed with Algorithm 1 for p = 1, (b)∣∣∣k∗2,i,j
∣∣∣, (i, j) ∈ I2 computed with Algorithm 1 for p = 1, (c)

∣∣∣k∗1,i,j
∣∣∣, (i, j) ∈ I1 computed

with Algorithm 2 (p = ∞), (d)
∣∣∣k∗2,i,j

∣∣∣, (i, j) ∈ I2 computed with Algorithm 2 (p = ∞).

Figure 9. Example 3: (a) the wrapped interferometric phase W , (b) the exact unwrapping
integers

∣∣k1,i,j
∣∣, (i, j) ∈ I1, (c) the exact unwrapping integers

∣∣k2,i,j
∣∣, (i, j) ∈ I2.
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Figure 10. Example 3: (a)
∣∣∣k∗1,i,j

∣∣∣, (i, j) ∈ I1, computed with Algorithm 1 for p = 1, (b)∣∣∣k∗2,i,j
∣∣∣, (i, j) ∈ I2, computed with Algorithm 1 for p = 1, (c)

∣∣∣k∗1,i,j
∣∣∣, (i, j) ∈ I1, computed

with Algorithm 2 (p = ∞), (d)
∣∣∣k∗2,i,j

∣∣∣, (i, j) ∈ I2, computed with Algorithm 2 (p = ∞).

Figure 11. Example 3: (a) the wrapped interferometric phase W , (b) the exact unwrapping
integers

∣∣k1,i,j
∣∣, (i, j) ∈ I1, (c) the exact unwrapping integers

∣∣k2,i,j
∣∣, (i, j) ∈ I2.
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Figure 12. Example 4: (a)
∣∣∣k∗1,i,j

∣∣∣, (i, j) ∈ I1, computed with Algorithm 1 for p = 1, (b)∣∣∣k∗2,i,j
∣∣∣, (i, j) ∈ I2, computed with Algorithm 1 for p = 1, (c)

∣∣∣k∗1,i,j
∣∣∣, (i, j) ∈ I1, computed

with Algorithm 2 (p = ∞), (d)
∣∣∣k∗2,i,j

∣∣∣, (i, j) ∈ I2, computed with Algorithm 2 (p = ∞).

are relative to N1 = 641 samples along the azimuth direction and N2 = 329
samples along the slant range direction.

Figure 13 reports the wrapped interferometric phaseW = Wi,j , (i, j) ∈ I meas-
ured by the ERS-1 satellite. Moreover we note that for these data the irrotational
property is violated at 5.28% of the points of I1 ∩ I2.

Table 2 is similar to Table 1. Of course in Table 2 does not appear the per-
formance index El2 defined in (30) since we do not know the exact unwrapped
interferometric phase Ue. A satisfactory analysis of the solution obtained with real
data can be done comparing the true digital elevation map of the region of Sardinia
related to the data considered with the digital elevation map obtained from the un-
wrapped interferometry phase computed with the different methods proposed here.
However at this time we can not report this comparison, because is not available to
us sufficiently accurate information about the digital elevation map of Sardinia.

Figure 14 reports the solution computed with Algorithm 1 for p = 1 and
the solution computed with Algorithm 2. Figures 15–18 report the corresponding
unwrapped phase functions obtained for several choices of the parameter p that
defines the mathematical model used. Moreover in Algorithm 1 we have chosen
δ = 1, n = 3 All the reconstructions of unwrapped phase functions U are com-
puted assuming U1,1 = 0.
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Figure 13. The wrapped interferometric phase of a region of Sardinia, Italy. Measurements
made by the ERS-1 SAR system.

We can see that the unwrapped phase functions depend on the parameter p for
local details. Further research in this direction to characterize features of the data
useful to choose p will be reported elsewhere.
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Figure 14. Real data: (a)
∣∣∣k∗1,i,j

∣∣∣, (i, j) ∈ I1, computed with Algorithm 1 for p = 1, (b)∣∣∣k∗2,i,j
∣∣∣, (i, j) ∈ I2, computed with Algorithm 1 for p = 1, (c)

∣∣∣k∗1,i,j
∣∣∣, (i, j) ∈ I1, computed

with Algorithm 2 (p = ∞), (d)
∣∣∣k∗2,i,j

∣∣∣, (i, j) ∈ I2, computed with Algorithm 2 (p = ∞).
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Table 2. The numerical results obtained on the real data.

p = 1 p = 2 p = ∞
Algorithm 1 Algorithm 1 Algorithm 1 Algorithm 2∥∥k∗∥∥1 = 12810∥∥k∗∥∥2

2 = 12924∥∥k∗∥∥∞ = 2

Kl1 = 0.61

N = 841624

M = 209925

T = 17.26s

∥∥k∗∥∥1 = 12817∥∥k∗∥∥2
2 = 12817∥∥k∗∥∥∞ = 1

Kl2 = 0.78

N = 3364544

M = 629769

T = 74.02s

∥∥k∗∥∥1 = 12817∥∥k∗∥∥2
2 = 12817∥∥k∗∥∥∞ = 1

Kl∞ = 2

N = 3364544

M = 629769

T = 62.99s

∥∥k∗∥∥1 = 18661∥∥k∗∥∥2
2 = 18661∥∥k∗∥∥∞ = 1

Kl∞ = 2

N = 841624

M = 209925

T = 12.85s

Figure 15. The unwrapped interferometric phase computed with Algorithm 1 choosing p = 1.
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Figure 16. The unwrapped interferometric phase computed with Algorithm 1 choosing p = 2.

Figure 17. The unwrapped interferometric phase computed with Algorithm 1 choosing
p = ∞.
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Figure 18. The unwrapped interferometric phase computed with Algorithm 2.
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